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Phase-field lattice kinetic scheme for the numerical simulation of dendritic growth

I. Rasin™ and W. Miller
Institute for Crystal Growth (IKZ), Max-Born-Strasse 2, 12489 Berlin, Germany

S. Succi
Istituto Applicazioni Calcolo CNR, 137 Viale del Policlinico, 00144 Rome, Italy
(Received 16 March 2005; published 28 December 2005)

A phase-field lattice kinetic model is presented for the numerical simulation of the dendritic growth of a pure
crystal in the presence of thermal transport. A finite-difference scheme for the phase field is combined with an
explicit lattice kinetic scheme for the temperature field. The resulting scheme is advanced in time with an
adaptive time-marching procedure which permits us to achieve long simulation times with larger time steps
than explicit finite-difference and previous kinetic methods. The method is demonstrated for the case of
dendritic growth of a single crystal over a wide range of Stefan and capillarity numbers.
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I. INTRODUCTION

In the recent past, phase-field methods have rapidly
emerged as the tool of choice for the numerical simulation of
interfacial phenomena in solidification processes [1-6]. The
major advantage of the phase-field method is to avoid the
explicit tracking of thin and often quite complex interfaces.
This is achieved by introducing a real-valued order param-
eter, or phase field, whose asymptotic values, typically O and
1, tell fluid and solid phases apart. The interface between
solid and liquid phases is then identified as the region where
the phase field switches between the values characterizing
the two phases. However, a potential drawback of the phase-
field method is that very high resolution is needed to resolve
the interface accurately. The resolution problem has a par-
ticularly severe impact on the time span of the simulation,
especially if explicit time stepping is used for the diffusive
terms. A common way to circumvent time-step limitations is
to turn to implicit time marching. This removes the stability
constraint (not the accuracy ones, though) but at the price of
being forced to solve an expensive matrix problem at each
time step. Another, more sophisticated, option is dynamic
grid refinement [4], in which mesh resolution is dynamically
adapted to the growing interface. This is possibly the most
efficient strategy, but it comes at the cost of significant com-
plications in the code structure.

In this paper, we present an option that permits us to
achieve large time steps without surrendering the simplicity
of explicit formulations. This is accomplished by a kinetic
representation of the heat conduction equation. By kinetic,
we mean that diffusion is not represented directly by a sec-
ond order space derivative, but rather emerges as an adia-
batic limit of a relaxation-propagation dynamics of underly-
ing (computational) particles [7-9]. The advantage of such a
representation is that space and time derivatives always ap-
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pear at the same (first) order, so that the Courant-Friedrichs-
Lewy (CFL) stability constraints imply a linear scaling of the
time step with the mesh spacing, as opposed to the quadratic
scaling of standard explicit methods. In addition, conserva-
tion laws can be enforced into the schemes to machine
roundoff precision. In this paper, we present a kinetic method
allowing for a variable time step which can be adapted to the
actual time scale of the physical problem in the course of the
evolution. The method offers enhanced efficiency without
requiring any major change in the algorithmic structure of
the computational scheme. Moreover, the present kinetic
method naturally accommodates anisotropic and inhomoge-
neous diffusion coefficients, which play a major role in the
crystallization of materials with different heat diffusivity in

the two phases.
II. GOVERNING EQUATIONS

The physical problem we are going to address is the simu-
lation of crystallization processes from pure materials. This
involves two scalar fields, the phase field ¢, distinguishing
between liquid and solid phases, and the temperature field 7.

The governing equation for the phase-field model is

o= EAP—g 45— NpyT, (1)

where ¢=0 denotes the liquid and ¢=1 the solid phase.
The temperature equation reads

L
3,T=DsAT + —9,h(p), (2)
C
p

where T=T- T,, T, being the melting-point temperature.
In the above, ¢ is a measure of the interface width, 7is a
characteristic relaxation time of the phase field, and \ is a
measure of the coupling between thermal and diffusive ef-
fects. Dy is the thermal diffusivity, and L and c, are the latent
heat and heat capacity, respectively. The subscript ¢ stands
for the partial derivative with respect to ¢. The term g(¢) is
an arbitrary function with minima in the stable phases. It is
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TABLE 1. Different expressions for A(p).

h(¢) a

¢ 0.5539
104°-15¢*+6¢4° 0.3519

The term p(¢) is a monotone function in the interval [0, 1]
and takes values 0 and 1 on the left and right boundaries,
respectively. It is taken as a polynomial of the fifth order for
stability reasons:

p=¢'(6¢° = 15¢+10). (4)

Usually the function h(¢) is also taken in the form of a
polynomial with the same conditions as for p(¢). It was
shown in [10] that in order for the model to be thermody-
namically consistent 4(¢) should be equal to p(¢), but other
polynomials can also be used [5]. The expressions used for
h(¢p) are listed in Table 1.

The above equations describe the phase boundary which
moves according to the Gibbs-Thomson and growth kinetic
effects. Its velocity is given by

V=—/.L<_+T , (5)

where R is the local radius of curvature, w is the kinetic
coefficient, and dy=y,T,c,/ L?, v, being the surface tension,
is the capillary length.

The parameters & 7, and N are related to the physical
properties through the following expressions:

L
! =a1)\_7‘§_a20§7c , (6)
P
do=a, S, ™)
Wzglal’ (8)

where w is the width of the transition region, a;=1/3 V2 and
values of a, are listed in Table I. It is convenient to introduce
the capillary length number Ca as the ratio between the cap-
illary length d, and the characteristic length of the transition
region:

Ca= "—; ©)

The limit Ca— o characterizes the regime of zero-thickness
interfaces. Small capillary length numbers are associated
with “thick” interfaces which allow low numerical resolu-
tion. Thus, the capillary length number should be kept as
small as possible, compatibly with the need of resolving the
physical length scales, typically the tip radius R. A second
major control parameter is the dimensionless undercooling,
or Stefan number, defined as

St=c,(T, = T)/L, (10)

where 7 is the asymptotic temperature at an infinitely re-
mote boundary. Small Stefan numbers are computationally

PHYSICAL REVIEW E 72, 066705 (2005)

demanding because they correspond to very slow evolutions
toward steady state.

III. KINETIC FINITE-DIFFERENCE SCHEME FOR HEAT
TRANSPORT

The solution of the phase-field temperature equations in d
dimensions involves of the order of Npor~ (I1/w)? spatial
degrees of freedom, where /=D/V is a typical macroscopic
diffusion length. The corresponding time span of the simula-
tion is of the order of N,=I?/D;r time steps of size ot
=w/V, which leads to a computational load scaling like
(1/w)®*2. Typical values under ordinary undercooling condi-
tions (0.1<St<<1) easily lead to several millions of time
steps. At lower undercooling, the tip velocity becomes cor-
respondingly smaller and the time-step problem increasingly
more demanding. This provides a strong motivation toward
the development of fast or long time steppers.

Kinetic methods (KMs) offer an appealing perspective in
this direction. In particular, since they allow the time step to
scale linearly with the mesh size, they offer a better compu-
tational load, scaling like (1/w)?+!.

The main idea of the kinetic methods is to introduce a
distribution function f(r,v) of quasiparticles in phase space
(7,v). For the purpose of reproducing hydrodynamic diffu-
sion it is sufficient to retain only a very limited number of
discrete velocities 5,-. In fact, in d dimensions, 2d discrete
speeds are sufficient to recover hydrodynamic diffusion.

The notation fi(7) is chosen for the discrete distribution
functions, where the index i corresponds to velocity space ¢;,
and 7 labels the spatial node in the discrete grid. The most
common form of discrete kinetic equation is [11,12]

FlF+Edt 1+ 81) = £i(7,0) = 2 Qutl fi(F,0) = £(F.0)],
i
(11)

where ();; is a relaxation matrix and f;? is a local equilibrium
distribution. The physical observables are defined through
simple summations over the velocity degrees of freedom. In
the case of the heat equation, the temperature and the heat
flux are defined as follows:

T=Efi’ Jazzciafh (12)
where greek indices label Cartesian space coordinates. Pic-
torially, we can think of f as the distribution of “phonons”,
whose density and current density correspond to the thermal
energy (temperature) and thermal flux of the melt, respec-
tively. Here we consider a four-speed velocity space defined
by the four discrete speeds connecting each lattice site to its
nearest neighbors (in units of 8x/ &r):

El=(150)a 52=(0’1)’ E3=(_170)7 E4=(0,_ 1)

(13)
In two dimensions, the matrix ();; has the following eigen-
vectors [7]:

V(0)=(1,1’191)9 V(1)=(1,0’_1’0)9
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v@=(0,1,0,-1), V¥=(1,-1,1,-1). (14)

The corresponding collision matrix can be constructed ac-
cording to the spectral-decomposition rule [13,14]:

4
Vo
ij—WEwk N, (15)
k

where Nk=EiVl(.k)w,»V£k) are normalization factors, w; is a set
of weights, w;=1/4, and w; are (non-negative) eigenvalues
which encode relaxation to local equilibria and control the
diffusion parameters. For the case of a fluid flow with veloc-
ity u, the equilibrium populations f;¢ are chosen as follows

[7]:
f‘f"=wiT<1+g"—f), (16)

where c; 2=Sw; iC; —Ew i¢;,=1/2 is the sound speed of the lat-
tice. However hereafter we shall focus on the case of no

flow, u=0. With this choice, the equilibrium expressions for
the kinetic moments P,z and Q 4, (see next section) take the
following form:

P=cTS,p 0%%,=0, R 5=0.

A. Diffusion via adiabatic approximation

In the kinetic approach diffusion is not represented di-
rectly by second order spatial derivatives, but rather as an
emergent property from propagation-relaxation dynamics. In
order to appreciate this point, the first step is to split the
distribution function into equilibrium and nonequilibrium
components, and then assume that the latter be a small per-
turbation of the former:

=ffq+ i‘le’ ﬂleN eﬁq,

where € is a smallness parameter, typically the ratio of mo-
lecular mean free path to the smallest macroscopic length
(Knudsen number).

The adiabatic approximation implies the following rela-
tions for the physical values:

wjx J 0] Pa
—Ix <, j <1, LBy, (17)
X y apB

where we have set w;=0 (by mass conservation), w;= w,
=ws3, and Wp= (y.

To see how the kinetic equation (11) reproduces the dif-
fusion equation in the adiabatic limit J,f < wf, we first ex-
pand the streaming term at the left hand side to second order
in the lattice time step o

&sz+czaaafl+ 5t< t£ﬁ+cia‘9tafi+ Cllzfié&aﬁf)
=EQij(f;q_fj)- (18)
J

Subsequently, we take moments of the expanded equation,
that is, we sum over W, with W;={1,c;,,c;sC;g}. This
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leads to the following set of partial differential equations:

ot
F+ E(ﬁ,F+ d,F,) =0,
ot
+ _(atFa-'_ &BFQB) =- (l)].]a,

Faﬂ+ (& FC’B + (9yFa,87 = wP(PaB P ,3)

where we have defined the following differential one-forms:

F=0T+d,,
Fo= 04 o+ 0gP o,
Fozﬂ = atPa,B-'- a’yQaB)n

Fa/i‘y = atQaBy+ aﬁRaByﬁv

and tensorial kinetic moments:

Pa,B = 2 ficiaciﬁ’
1
Oupy= 2 JiCiaCipCiys

aﬁ75 Efz Cia iﬁciyciﬁ'

Since we have only four discrete speeds, the only nonzero

components of the above kinetic tensors are P,.,Q .

:c?TJx,Rmx:c?Pxx, and the same by exchanging x with y.
To leading order in &, the above set of tensorial equations

reduces to the following:

F=0,
Fa=_w.l‘]w

Fop=—wp(Pap—Pglp).

The second relation yields J,=-F,/w;, which, inserted into
the first one, delivers

1
atT_ _[aa([yt‘]a + aE})aﬁ)] =0.
Wy

Next, by adiabaticity, we shall assume that d,J,<w;/,

and PaB~P%=TC?5aB. This leaves us with

o

0T=-0,,T,

Wy
which is the desired diffusion equation, with a diffusivity
DT=cf,/ w;. This quick derivation can be made more rigorous
by taking into account terms up to second order in the time
step ot. The final result is the following telegrapher’s equa-
tion:

ot
a,<T+ 5@T> =c2(1/wy— 8112)3 40T + O(51)%.

By assuming 6td,T<<d,T, we are left with a diffusion equa-
tion with a renormalized diffusivity
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Dr=c*(1/w;— 61/2). (19)

The second term on the right hand side, sometimes called
propagation diffusivity, is a typical signature of Kinetic
schemes, for it derives from the second order expansion of
the streaming term in the kinetic equation. A Fourier analysis
shows in fact that the scheme is linearly stable under the
CFL condition [12]

0< w6 <2, (20)
cot < bx. (21)

The first inequality stems from the explicit (forward Eu-
ler) time integration of the collision operator, and it is seen to
coincide with the condition that the diffusivity D be positive
definite. The second one stems from the CFL requirement on
the streaming operator, which is integrated exactly, since the
discrete speeds are constant in space and time. Since in the
kinetic scheme the particles move along the light cones de-
fined by the condition cdt= dx, the second CFL condition is
satisfied by default.

It should be noted that the lattice kinetic method in d
dimensions requires 2d discrete distribution functions,
thereby introducing a memory overhead which has to be
weighted against the gain in the size of the time step.

IV. ADAPTIVE TIME STEPPING

A major computational advantage of lattice kinetic meth-
ods, as compared to other particle methods, is that particles
move along a set of constant and prescribed directions de-
fined by the discrete speeds ¢;. By choosing the time step
according to the light-cone condition cét=dx, particle dy-
namics takes place entirely on the lattice. This is a significant
computational advantage, since no interpolation is required
to locate the particles in the spatial grid. On the other hand,
the price is that the mesh must necessarily be uniform and
the time step cannot be changed in time unless the mesh
spacing is changed accordingly (as is done in multiscale ki-
netic methods). The latter limitation is particularly severe for
situations like the one discussed previously, in which long
simulation times are required. In the following, we show
how the time-step limitation can be circumvented by a
proper rescaling (or annealing) of the discrete velocities. The
scope of dynamic time stepping is to adapt the time-step size
to the actual change rate of the relevant physical quantities
without changing the spatial grid resolution.

With reference, say, to the flux J, let us introduce the
diabatic parameter €;:

(St 9 Jdt)

wjjeq . € <1. (22)

€=
The maximum value of this parameter, say €,,,, character-
izes the numerical error of the method, as due to lack of
adiabaticity. Intuitively, large values of €,,,, indicate that the
time step should be reduced, while small values carry the
opposite message. Since we work at a constant mesh spac-
ing, a change of the time step must necessarily involve a
corresponding change of the discrete speeds, namely,
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+
L, o
C.=—C;

; 23
P =5 C (23)

where ¢; and ¢; are the discrete velocities before and after
the change of time step, respectively. The physical quantities
must be continuous across the time interface, which means

T =T, J'=J. (24)

This is not true for the sound speed. It is instructive to illus-
trate this point with a concrete example. Suppose the time
step is increased by a factor 2, §t*=246t. Since dx remains
constant, the particle speed c=0dx/dt, as well as the sound
speed, must be reduced by a factor of 2, i.e., the system is
cooled down. The change of the physical quantities is as
follows:

St —20t, O — Ox, (25)
c,—cd2, ¢c—cl2, (26)
T—T, u—u, (27)

Dy — Dy, o' — 4w, - 6. (28)

The transformation law for w; follows from the invariance of
the diffusivity D;=c(1/w,~ 6t/2). The corresponding trans-
formations of dimensionless quantities follow from the
physical ones by recalling that space units stay unchanged,
while the time units are doubled, from &t to 26t. Since the
physical flow speed u stays unchanged, while the sound and
molecular speeds are halved, the local equilibrium must
change too. Indeed, the dimensionless group uc/ cf entering
the local equilibrium gets doubled, which means that the
flow speed in lattice units u/c, must increase by a factor of 2
when passing across the time interface. As a result

F9F = £9Qu) = Twy(1 + ¢; - ulc?). (29)

However, for the present case of no-flow conditions, this
point is immaterial.
As to nonequilibria, we impose
O W10 = Bt 1, (30)

L

which follows directly from the continuity of d,f across the
time interface. The relations (29) and (30) provide the trans-
formation law of the distribution function across the time
interface.

We observe that increasing the time step is synonymous
with cooling the system, and, conversely, reducing it is
equivalent to heating up the system. Physically, this means
that “fast” molecules are used when the dynamics is fast, and
“slow” molecules are used when the dynamics is slow. Thus,
the variable time step is literally associated with a dynamic
annealing procedure. It should be noted that for problems
with net fluid flow (u# 0), dynamic annealing is restricted
by realizability conditions of the kinetic scheme, specifically
by the requirements that local equilibria remain positive defi-
nite. However, for no-flow problems, such as the one consid-
ered here, this limitation is lifted [see Eq. (16)].
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V. NUMERICAL SCHEME FOR THE PHASE-FIELD
EQUATION

A simple explicit scheme for the phase-field and tempera-
ture equations is as follows:

&6t -
dd=""—Ad(1) - dgy(1) - dApy(OT(1), (1)
L
dT = 8tD;AT + c—h¢(t)d¢, (32)
P

where dp= P(t+ 61)— (1), dT=T(t+6)—T(¢), and A is the
discretized Laplacian, in our case, a nine-point template in
order to reduce lattice anisotropy.

Larger time steps can be taken by replacing the right hand
side of Eq. (32) with the kinetic scheme, that is, by solving
the kinetic equation (11) instead of the scalar equation (32).

Latent heat production can be included in the kinetic
equation by inserting the corresponding term in the expres-
sion of the local equilibria f*:

ﬁq=Wi<T(f) + c£h¢(f)d¢>~ (33)
p

The latent heat term may cause an instability, again due to
violations of the realizability constraints, unless the time step
is properly controlled. Strong heat production can result from
a combination of serial solidification and melting processes
in the transition region. This potential instability can be soft-
ened by using a semi-implicit time-marching scheme, instead
of the explicit time marching, Eq. (31):

&6t
Pt + 6t) — (1) = —T Agp(1) — Stg 4(1) + St\p 4(1)
X (T(t) + £h¢(t)dd>).
p

This equation can be recast in explicit form as follows:

(E1DAB(1) - g4(1) + Apy()T(1)
1+ N(L/cp)h 4(t)p 4(1)
Clearly, the feedback term in the denominator acts as an

effective limiter to d¢ in the presence of strong latent heat
effects.

dp= 6. (34)

VI. NUMERICAL RESULTS

The present kinetic scheme is validated through compari-
son with existing literature results for the problem of den-
dritic growth from a pure melt [1,5]. Initial conditions are as
follows. The phase field is nonzero only around the origin,
with a sharp transition around a nucleus radius ry, ¢(r,0)
=tanh[(r—ry)/&V2]. The temperature field is initialized ac-
cordingly, with a melting point temperature 7, in the solid
nucleus, and boundary temperature 7, elsewhere:

1(r,0) = ¢(r,0)T,, + [1 — ¢(r,0)]T,. (35)

Due to the fourfold symmetry of the problem, the simulation
is confined to the first quarter only. Adiabatic (no-flux) con-
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TABLE II. Dendritic growth. ox=0.4, 7=1, é=1.

St € N D Ca U Utheor Size
0.55 0.05 4.70 0.277  0.0167  0.0170 300X 800
055 0.05 7.05 3 0.185 0.0178 0.0170 200X 600
045 0.05 9.40 0.139  0.00564 0.00545 400X 1200
0.30 0.05 23.5 10 0.055 0.000685 0.00068 500 %2000
055 0.02 470 2 0.277 0.00694 0.00685 300X 1000

ditions are imposed at the outer boundaries, y=y,, and x
=Xmax» While specular symmetry is imposed at the inner ones,
x=0 and y=0.

A. Dendritic growth with isotropic heat transfer

We first consider the transient evolution of a small
nucleus placed in an undercooled melt. In the course of the
evolution, the shape of the growing nucleus changes from
round to dendritic, in a way that depends on the anisotropy
of the surface tension and on the kinetic coefficient. After the
transient dies out, the growing dendrite attains a stationary
state, which is characterized by a constant value of the tip
velocity and radius. Surface tension anisotropy is modeled
by a standard fourfold symmetric expression [1,2]

(V.9)* + (V,9)*

I

v(in)=1-3¢ +4¢,

where 77=(cos 6,sin 6) is the outward normal to the growing
surface and €, is the anisotropy parameter. In terms of the
orientation angle

Y(0) =1+ ¢, cos 46. (37)

All simulations of dendritic growth were performed with
infinite kinetics, ,u‘l =0, which means the temperature on the
interface is defined solely by the Gibbs-Thomson condition
and does not depend on the tip speed V [see Eq. (5)]. This
assumption allows one to derive N\ and Ca from Eq. (6) in
terms of the dimensionless ratio of phase to heat diffusivity,
DTT/ §2:

D 2
_Bmi o, G (38)
aj gL TDT

namely, N=(Ca/a;)(c,/L).

The dendritic tip velocity, v, was measured and its dimen-
sionless value v'=vd,/ Dy was compared with the theoretical
one given by the equation of Nash and Glicksman (see [1]).
As clearly shown in Table II, satisfactory agreement is ob-
tained for all values of the parameters explored, including
the most challenging ones (St=0.30, Ca=0.055).

The time evolution of the time step and the corresponding
value of the diabatic control parameter € are shown in Fig. 1.

It is seen that in the initial stage the time step stays close
to its initial value (df,/7=107%) because the tip speed is de-
creasing very fast (see Fig. 2). Once the tip speed stabilizes,
the time step grows by over an order of magnitude, until it
starts to decrease again when the tip speed shows a further

066705-5



RASIN, MILLER, AND SUCCI
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10 100 1000 10000
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FIG. 1. Evolution of the diabatic parameter and time step vs
number of time steps. The main parameters are St=0.30, Ca
=0.055; see Table II. The upper two dashed lines correspond to the
maximum and minimum allowed values of the diabatic parameter e.
The lower dashed line indicates the maximum time step allowed by
the diffusive CFL condition for an explicit finite-difference method.
The ratio of new to old time step is fixed: dt*/dr=1.05.

increase toward its final steady-state value. Note that the
product 06t stays within a factor of 2 of its initial value,
indicating that the time step adjusts itself to the changes of
the tip speed rather than to a (constant) sound speed as in
standard kinetic methods.

The morphological changes of the growing nucleus are
displayed in Fig. 3, which reports three snapshots after 2000,
26 000, and 70 000 time steps, respectively (the three arrows
at the bottom of Fig. 1). A comparison with the maximum
time step allowed by a diffusive CFL condition, ofcpy
=&x*/2dDy (d spatial dimensions), shows that the present
method achieves almost an order of magnitude speedup. As
an indication of computational performance, the simulation

0.004 ' ' ; ' 40
0.003; 130
> 0,002 120 g
. »
0.001&_/— 110
o b .
0 1000 2000
t/x

FIG. 2. Value of the tip velocity ¢ and time step vs dimension-
less time. Not shown is the initial value 0(0)=0.012. The param-
eters are the same as in Fig. 1. The dashed line corresponds to the
theoretical value of the steady-state tip speed. The stepped curve
reports the ratio of actual to initial time step. The arrow indicates
the maximum time span allowed by the diffusive CFL condition,
with the same number of time steps.
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(c)

FIG. 3. Screen shots of the phase field for the case St=0.30 and
Ca=0.05 (see Table II), after 2000, 26 000, and 70 000 time steps.
Dark color codes for high temperature. The thick line shows the
shape of the interface.

of 75 000 time steps on a 1000 X 1000 grid, for the case St
=0.30 and Ca=0.055, takes about 2 h CPU time on a 2.4
GHz Pentium Xeon processor.

B. Dendritic growth with anisotropic heat conductivity
in the liquid

In the next set of simulations, we investigate the influence
of anisotropy of the heat conductivity on the resulting orien-
tation of the dendritic tip. Heat conduction properties of ma-
terials are normally isotropic, although there are number of
notable exceptions. For instance, in single crystals, heat con-
duction properties depend on the crystallographic grid, and
that is why they can be anisotropic even though the melt
properties are normally isotropic. Other examples are liquid
crystals, which exhibit anisotropic heat conduction in the lig-
uid phase (see, e.g., [15]). The heat equation in the aniso-
tropic case takes the form

GT =V (D}V ),

where DZB is the heat diffusivity tensor. This tensor can be
defined through the maximum and minimum values of the
heat conductivity and the angle between maximum diffusion
direction and x axis, DT, DT and y, respectively,

max> ' min’

r DI —Disin’(y) - iDlsin(2y)

D aB ™ 1 DTsin(2 T T.. .2 >
5Dysin(2x) Dy — Dacos™(x)

where D} = DrTnaX—D;in.
Crystal growth for the standard case of a fourfold aniso-

tropy in the surface tension is simulated jointly with an
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1 2 3
(a) (b) ()
4 | 5 6 '
(d) (e) "

FIG. 4. Dendritic growth with anisotropic surface tension and
heat conduction. Cases 1-3 and 4-6 correspond to €=0.00 and
0.005 respectively. In all cases x equals 0°, —45°,-60°. Main pa-
rameters are St=0.55, 7=1, A=9.40. The domain size is 600
X 600, with {§=1.0 and dx=0.4.

(equally) anisotropic heat conduction for both liquid and
solid phases. In the Fig. 4 different shapes are shown corre-
sponding to different orientations of D] .. For every orien-
tation angle, two simulations, with and without anisotropy in
the surface tension, are presented. The case with isotropic
surface tension shows preferential growth along the direc-
tions given by the heat orientation angle, that is, x=0,
—45°,-60°, respectively. Once anisotropy in the surface ten-
sion is switched on (lower row), the picture becomes signifi-
cantly more complex due to the nonlinear interaction be-
tween heat and surface tension anisotropy. Indeed, when both
anisotropies are on, preferential growth takes place along
new directions, which do not coincide with the specified val-
ues of either 6 or .

Next, we show that computation of sidebranching (growth
of secondary dendrites) is possible within reasonable time.
Here we present a calculation for case 5 (see Fig. 4) with
x=-45°, shown in Fig. 5, corresponding to 25 000 time
steps. The result was observed in about 4.5 h CPU time on a
2.4 GHz Pentium processor. The sidebranching was induced
by a space-time random perturbation in the coupling coeffi-
cient; ON/N=0.05 is used. The effects of anisotropic diffusiv-
ity on the the primary dendrites, which grow slightly slanted
with respect to the Cartesian axes, are clearly visible. On the
other hand, preferential heat transfer at y=-45° results in
secondary dendrites growing only in the second and fourth
quadrants. These results witness the major impact of aniso-
tropic surface tension and heat transport properties on the
complex morphology of the growing crystal.

C. Dendritic growth with small undercooling
using a block-structured grid

Simulations for small undercoolings are challenging be-
cause the temperature field is long ranged compared to the
length scale of the crystal. Different attempts have been
made in order to reduce computational costs. Karma and
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FIG. 5. Snapshot of dendritic growth with anisotropic heat con-
duction after 25 000 time steps. Major parameters are St=0.55, 7
=1, A\=14.1, €=0.05, and £=45°. The domain size is 2500 X 2500,
with a mesh spacing dx=0.6 and width w=1.0.

Plapp introduced a random walker for the computation of
heat transport [16]. Provatas er al. [17] made use of an adap-
tive grid when calculating dendritic growth for an undercool-
ing of St=0.25 and 0.1.

We adapted the concept introduced by Filippova and
Hiénel [18] to set up a block-structured grid with a fine grid
in the region of the phase transition and a coarse grid far
away. In the beginning it is not known how large the domain
should be for a certain set of parameters to mimic an infi-
nitely large domain as it is assumed in the derivation of the
analytic solution. Therefore, we start with the domain of the
finest grid only. In this domain the dendritic growth takes
place and the phase-field equation is solved. The initial tem-
perature in the domain is set according to the chosen under-
cooling: Tip=StL/c,. We apply zero-flux boundary condi-
tions at the boundaries of the current computational domain
and measure the temperature T at the cut of the boundary
and the axis of the growing tip. Whenever T\ is larger than
a critical value T, a new layer of a coarser grid is dynami-
cally added. Every additional layer consists of three subdo-
mains where two subdomains have a coarsening factor n=2.
The resulting grid hierarchy for two additional layers can be
seen in Fig. 6. The temperature in the added layer is set to
Tinie-

The relaxation matrix is different in the different layer
grids due to the relations (15) and (19). In particular, we kept
the speed of sound c, the same in every layer by changing
the time step from layer to layer by the same factor as the
grid spacing. Therefore, we have different time steps ot in
the different layers and the relaxation parameter w; is also
different according to Eq. (19). On the finest grid (layer 0)
there is the smallest time step and this serves as the clock for
the whole domain. In the next layer (layer 1) we need to
perform computations only every second clock time, in layer
2 only every fourth clock time, and so on.

In order to have the same scalar value on all layers the
distribution functions at the interfaces between two layers are
rescaled via
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FIG. 6. Block-structured grid. Phase-field equations are solved
only on the finest grid. Heat transport is computed everywhere.

fi(71) =ff(rit)ﬂﬁ +ff"’f(rit)<l - ﬂ) (39)
Wy

wy

of (7 _~*ﬂ}~q,c'* _ﬁ

Fi(r1) jf(r,t)wljr +f7 (r,t)(l w’;> (40)
where the superscripts ¢ and f indicates the coarse and fine
grids, respectively. The tilde denotes time and space interpo-
lation. In particular, we used a linear interpolation in both
space and time. The rescaling is performed after the collision
step. The same type of rescaling has been derived by Dupuis
and Chopard for the lattice Bhatnagar-Gross-Krook (LBGK)
method [19].

In order to keep the dendritic tip inside layer O the com-
putational domain moves with the advancing solidification
front. Once the two tips were grown from the original seed
we are only interested in the evolution of the tip along the y
direction. In every time step we check whether the y coordi-
nate of the tip exceeds some value. Everything within y
<nodx, is chopped off, where dx is the grid spacing in layer
0 and n is an integer. Because we want to keep the entire size
of every layer we have to perform a mapping for the distri-
bution functions, which is done by a bilinear interpolation. In
all our computations we set n=1.

Figure 7 shows the simulation results for St=0.25 and 0.1.

107 =

10-8 \
1>107* \ \

\\7
1m° - 4
,,,,,,,,,,,,,,,,,,,,,,, i =
1 i PR S PN
102 10° 102 10¢ 10°

th

FIG. 7. (Color online) Tip velocity ¢ versus time for St=0.25
(curves a and b) and St=0.1 (curves ¢ and d). The parameters of the
calculations are found in Table III.
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TABLE III. Simulation with small undercooling.

St D N 0 N w ox o max U Etheor
a 025 13 301 50 0.4 0.037 0.000270  0.00028
b 025 13 401 50 0.6 0.088 0.000285  0.00028
¢ 01 80 301 50 0.6 0.041 0.0000080 0.0000048
d 01 80 801 50 0.6 0.041 0.0000051 0.0000048

The results and simulation parameters are summarized in
Table III. For both undercoolings we chose the temperature
T,.;=(St=10"°)L/c, as the criterion for adding a new layer.
In the final situation we had five layers in total for St=0.25
and eight for St=0.1. The latter needed about 22 h on a 2.4
GHz Pentium processor.

D. Preliminary three-dimensional results

The present kinetic method readily extends to three-
dimensional situations. Leaving full details to a future pub-
lication, here we only sketch the basic points. The three-
dimensional scheme requires six distribution functions,
associated with the corresponding six nearest-neighbor dis-
crete speeds:

cl=(l,0,0), C2:(O,l,0), C3:(0,0,1),

ci=(=1,0,0), ¢s=(0,—1,0), cg=1(0,0,—1).

The corresponding 6 X 6 collision matrix reads as follows:

2 -1 -1
ALY el P O R B
“o2l-a A |Tle Pl T 6 ’
1 -1 2
(41)

where A relates to the heat conduction tensor through the
following expression [7]:

Temperature

0.000208
-0.0138

-0.0278,

-0,0419.

-0.0559

FIG. 8. Shape of the 3D dendritic crystal for the case St
=045, Ca=0.22, €,=0.015, D=3. The grid size is 250X250
X250 grid points with a mesh spacing dx=0.6, {=1.0.
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FIG. 9. Tip velocity and tip radius vs time steps. St=0.45, &,
=0.6, =0.015, D=3, size 200X 200 X 300.
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The matrix P can be shown to ensure better stability and
isotropy of the scheme [7].

The surface tension is a straightforward generalization of
the two-dimensional expression, namely,

(V)" + (V)" + (Vz¢)4> |
Vol

yn) = 70(1 —3e+4e

(43)

By symmetry arguments, only one-eighth of the whole
crystal was simulated. Figure 8 shows the crystal surface of
the three-dimensional dendrite. The shading corresponds to
the local temperature (light=hot,dark=cold). The cold re-
gions on the tips indicate the influence of the Gibbs-
Thomson effect, which makes low-curvature surfaces hotter
than high-curvature ones. The evolutions of the tip velocity
and radius are plotted in Fig. 9. Here 7 is defined as 7
=r/d,.

The time-adaptive procedure proceeds exactly in the same
way as in the 2D case. The evolution of the time step during
the growth process is plotted in Fig. 10. From this figure, it is
seen that the error estimate goes below the minimum value at
the end of simulation. This means that the time step is not
limited by the kinetic scheme, but rather by the semi-implicit
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FIG. 10. Tip velocity and tip radius vs time steps. St=0.45, o,
=0.6, eZ:0.0lS, D=3, size 250X 250X 250. The arrow indicates
the maximum step allowed by the diffusive CFL condition.

time marching for the phase-field equation. Note that the
time step is almost a factor of 3 larger than the maximum
diffusive time step for the central-finite-difference method.
The simulation of 6000 time steps on a 2503 grid required
about 24 h CPU time on a 2.4 GHz Pentium processor.

VII. CONCLUSIONS

Summarizing, we have presented a kinetic scheme that
permits the solution of phase-field equations, coupled with
temperature dynamics, using an explicit time-marching
schedule free of diffusive CFL constraints. At variance with
standard kinetic schemes, the present one can adapt the time
step to the actual dynamics of the growth process, thus re-
sulting in substantial CPU-time savings. The scheme has
been validated for a variety of growth phenomena, including
two-dimensional dendritic growth from the melt, for both
isotropic and nonisotropic surface tension and heat diffusiv-
ity. A preliminary application to three-dimensional dendritic
growth has also been presented.
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